This article was downloaded by: On: 24 January 2011 Access details: Access Details: Free Access Publisher Taylor & Francis Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 37-41 Mortimer Street, London W1T 3JH, UK

Journal of Coordination Chemistry

Publication details, including instructions for authors and subscription information: http://www.informaworld.com/smpp/title~content=t713455674

REACTIVITY OF HALIDE COMPLEXES OF TIN(II) I. The Reduction of Methyl Orange

Lars Johansson^a; G. P. Haight Jr.^a ^a Department of Chemistry, University of Illinois, Urbana, Illinois

To cite this Article Johansson, Lars and Haight Jr., G. P.(1971) 'REACTIVITY OF HALIDE COMPLEXES OF TIN(II) I. The Reduction of Methyl Orange', Journal of Coordination Chemistry, 1: 2, 155 – 160 To link to this Article: DOI: 10.1080/00958977108070757 URL: http://dx.doi.org/10.1080/00958977108070757

PLEASE SCROLL DOWN FOR ARTICLE

Full terms and conditions of use: http://www.informaworld.com/terms-and-conditions-of-access.pdf

This article may be used for research, teaching and private study purposes. Any substantial or systematic reproduction, re-distribution, re-selling, loan or sub-licensing, systematic supply or distribution in any form to anyone is expressly forbidden.

The publisher does not give any warranty express or implied or make any representation that the contents will be complete or accurate or up to date. The accuracy of any instructions, formulae and drug doses should be independently verified with primary sources. The publisher shall not be liable for any loss, actions, claims, proceedings, demand or costs or damages whatsoever or howsoever caused arising directly or indirectly in connection with or arising out of the use of this material.

REACTIVITY OF HALIDE COMPLEXES OF TIN(II) I. The Reduction of Methyl Orange

LARS JOHANSSON and G. P. HAIGHT, Jr.

Department of Chemistry, University of Illinois, Urbana, Illinois 61801

(Received March 12, 1971)

Halide ion is required for the reduction of methyl orange by Sn(II). Equilibrium data on the formation of $SnCl_{a}^{2-n}$ and SnI_{a}^{2-n} combined with kinetic data indicate that $SnCl_{3}^{-}$ and SnI_{3}^{-} form activated complexes with protonated methyl orange. The data also suggest pathways involving $SnCl_{4}^{-}$, $SnCl_{5}^{3-}$, SnI_{5}^{3-} and SnI_{7}^{5-} .

In 1959, Duke and Peterson¹ showed that $SnCl_3^$ was the only tin(II) species which has kinetic significance in the reduction of methyl orange in dilute hydrochloric acid. In their systems, Sn^{++} , $SnCl^+$, and $SnCl_2$ were the dominant species of tin(II). In 1961, Haight and von Frankenberg², postulated that $SnCl_3^-$ was the kinetically active Sn(II) species in the molybdate catalyzed reduction of perchlorate ion in solutions of high chloride concentration where $SnCl_2$, $SnCl_3^-$, and $SnCl_4^$ were the dominant species. Since chloride ion effects on the molybdate catalyst could not be ruled out, the lability of $SnCl_4^-$ and higher complexes as reducing agents remained in doubt.

Recent work on the stability of halide complexes of $5s^2$ and $6s^2$ ions Sn(II), Pb(II), Bi(III), etc.,^{3, 4, 5, 6} has shown that complexes of MX_n where M is metal, X is halide ion, distinctly favor n = 2, 4, 6and perhaps 8 vs. 3, 5, 7. Other work has shown that SnCl₃⁻ is an important Lewis base toward soft metal ions such as Pt(II).^{7, 8} It is not a good ligand toward hard ions. It does not form HSnCl₃ in strong acid. Rather it acts as an acid forming SnCl₄⁻ in aqueous hydrochloric acid.³

In this paper we extend the work of Duke and Peterson to higher concentrations ($\leq 4M$) of chloride ion and examine the behavior of $\operatorname{SnI}_n^{2-n}$ complexes toward the reduction of methyl orange. We have also determined the effect of changing acidity on reaction rates in each system.

Experimental. Kinetics. Experiments were designed such that d[MeO]/dt could be followed where [MeO] is concentration of methyl orange. Concentrations of all other reagents [H⁺], [Sn(II)],

 $[Cl^-]$ were held constant during any individual run. All runs exhibited first order decay in methyl orange over several half-lives. Analysis of first order rate constants k_{obs} as functions of $[H^+]$, [Sn(II)], and $[Cl^-]$ or $[I^-]$ were used as outlined in in the theoretical section to elucidate the mechanism.

Reagents. Methyl orange used without further purification was dissolved in 4M $HClO_4$. A 0.25 mM solution gave an absorbance of about 1.25 at 505 nm making it very suitable for kinetic runs.

SnCl₂ solutions were prepared by dissolving clear, fresh crystals of SnCl₂ · 2H₂O in 3 M HClO₄ to give $[ClO_4^-] + [Cl^-] = 4.0$ M. Tin metal and CO₂ were used to prevent oxidation of Sn(II). [Sn(II)] was determined by adding excess standard triiodide and titrating with standard thiosulfate solution.

 SnI_2 was prepared by simple precipitation, and washed with HClO₄. A mixture of tin, SnI_2 , and 4 M HClO₄ was bubbled with CO₂ and filtered free of solids.

Oxidation of Sn(II) in perchloric acid was inexorable, requiring the use of fresh solutions. However, [Sn(II)] did not change measurably in the time required for kinetic runs. The presence of Sn(IV) enhanced the yellow color of all iodide solutions, giving variable limiting absorbances after the disappearance of methyl orange. Scrupulous care with final absorbances as blanks was required for studies involving SnI_n^{2-n} .

All solutions were prepared under CO_2 . All mixing of reagents was performed in a CO_2 atmosphere.

Reactions were performed in a Beckman D. U. Spectrophotometer with cells maintained at $25^{\circ} \pm 0.5$ with thermospacers.

 $[Cl^-]$ and $[I^-]$ were corrected for complex formation using the values in Table I.

TABLE I Stability constants for SnX_n^{2-n} $T = 298^{\circ} K$ $\beta_n = [\text{SnX}_n^{2-n}]/[\text{Sn}^{2+}][\text{X}^{-}]^n \text{ M}^{-n}$ х Cl-a $C_1 - a$ I-p $\mu = 2.0$ $\mu = 4.0$ $\mu = 4.0$ βı 11.4 28 5 $\beta_2 \\ \beta_3 \\ \beta_4 \\ \beta_6$ 50.0 224 13.5 30.0 291 135 204 200 390 β8 120 ^a Ref. 3.

Theoretical. Our treatment of data is essentially that of Duke and Peterson.¹ Effectively, only methyl orange changes concentration during a given run and in all cases good first-order kinetics was obtained over several half-lives. Furthermore, reactions are first-order in total Sn(II) and in H⁺. The pseudo first-order rate constants k_{obs} are therefore given by:

$$k_{obs} = [\mathrm{H}^+](k_o[\mathrm{Sn}^{2+}] + k_1[\mathrm{Sn}\mathrm{X}^+] + \dots + k_n[\mathrm{Sn}\mathrm{X}_n^{2-n}]) \quad (1)$$

where X is Cl or I.

If we define
$$\beta_n = \frac{[\operatorname{SnX}_n^{2-n}]}{[\operatorname{Sn}^{++}][\operatorname{X}^{-}]^n}$$

equation (1) becomes:

$$k_{obs} = \frac{[\mathrm{H}^+][\mathrm{Sn}(\mathrm{II})](k_o + k_1\beta_1[\mathrm{X}^-] + k_2\beta_2[\mathrm{X}^-]^2 + \dots + k_n\beta_n[\mathrm{X}^-]^n)}{1 + \beta_1[\mathrm{X}^-] + \beta_2(\mathrm{X}^-)^2 \dots + \beta_n[\mathrm{X}^-]^n} \quad (2)$$

The denominator, designated P by Duke and Peterson,¹ of equation (2), is calculated for each run using the constants in Table I. The quantity $F([X^-]) = k_{obs}P/[Sn(II)]$ at constant $[H^+]$ may then be examined by various iterative techniques to obtain values for the various rate constants.

$$F([X^{-}]) = [H^{+}] \sum_{0}^{n} k_{n} \beta_{n} [X^{-}]^{n}$$
(3)

RESULTS

A. $\operatorname{SnCl}_n^{2-n}$; $\mu = 2.0$. Duke and Peterson¹ simply plotted log F([Cl⁻]) vs. log [Cl⁻]. They report a straight line of slope 3 and conclude that only

 $SnCl_3^{-}$ of all $SnCl_n^{2-n}$ complexes reacts with methyl orange at a competitive rate. We found that higher complexes do participate and accordingly re-examined Duke and Peterson's data. Results of our re-examination are found in Table II. P and

 TABLE II

 Analysis of Duke and Peterson's data

[Cl-] M	F[C1 ⁻] ^a <u>k_{obs}P</u> [Sn(I1)]	F[Cl-] (equation 3)
0.0169	0.047	0.0261
0.0522	0.691	0.635
0.0881	3.29	3.28
0.0930	6.65	3.95
0.1255	10.0	10.1
0.1620	22.8	22.9
0.181	31.0	32.8
0.187	26.9	36.7
0.1965	50.0	43.0
0.468	788.0	820

^a Calculations of Duke and Peterson corrected by the author using $\mu = 2.0$ data.

F[C1-] were very insensitive to the changes in β values from those at $\mu = 3.0$ previously employed to those at $\mu = 2.0$ which we used.

The quantity, $F[Cl-]/[Cl^-]^m$ is corrected for estimates of all terms $k_n\beta_n[Cl^-]^n$ where $n \neq m + 1$ for successive iterations until plots of $F[Cl^-]/[Cl^-]^m$ vs. $[Cl^-]$ (primed in Figure 1) give straight lines through the origin.

The fit is quite good considering the obvious scatter on plotted points.

Figure 1 shows the results of plotting

 $F[Cl^-]/[Cl^-]^m$ vs. $[Cl^-]$. $\beta_0 = 1$. The intercept of

each raw plot should give the value of $\beta_m k_m [H^+]$. The slope of the final iteration should give $[H^+]\beta_{m+1}k_{m+1}$. It is clear that k_0 and k_1 are each zero and that Sn^{++} and SnCl^+ are each unreactive toward methyl orange. However, the m = 2 curve gives strong indication that both higher and lower $\operatorname{SnCl}_n^{2-n}$ complexes than n = 3 participate in the reduction of methyl orange. (Were Duke and Peterson's interpretation completely valid, the m = 2 curve would be a straight line through the origin.) There are obviously two or three badly skewed data points and one may in good conscience limit interpretation to include SnCl_3^- and SnCl_4^- by not accepting the point at lowest [Cl⁻]. We have chosen to do this to keep these results in line with our own findings at higher ionic strengths and much higher $[Cl^-]$ than those employed by Duke

FIGURE 1 Curves m = 0, 1, 2 are direct plots of $F([Cl^-])/[Cl^-]^n$. Curve m=2' is for $\frac{F([Cl^-])-9400[Cl^-]^n}{[Cl^-]^2}$ vs. $[Cl^-]$. Curve m = 3' is for $\frac{F([Cl^-]) - 4000[Cl^-]^3}{[Cl^-]^3}$ vs. $[Cl^-]$. Several iterations led to curves m = 2' and m = 3'. If the data point at lowest $[Cl^-]$ is accurate, $k_2\beta_2 \simeq 100$ is required, giving $k_2 \approx 2 \min^{-1} M^{-2}$ or 0.03 sec $^{-1}M^{-2}$. We regard this only as an upper limit. Data points are shown for m = 2, solid dots; m = 2', open circles; and m = 3', crossed circles.

and Peterson. At $\mu = 2.0 = [H^+]$ we find from Figure 1:

$$F[Cl^{-}] = 3600[Cl]^{3} + 9400[Cl^{-}]^{4}$$
(3a)

$$k_{o} = k_{1} = k_{2} = 0$$

$$[H^{+}]k_{3}\beta_{3} = 3600M^{-4}k_{3} = 58 \text{ min}^{-1}M^{-2} = 0.97 \text{ sec}^{-1}M^{-2}$$

$$[H^{+}]k_{4}\beta_{4} = 9400M^{-4}k_{4} > 300 \text{ min}^{-1}M^{-2} = 5 \text{ sec}^{-1}M^{-2}$$

where β_4 is assumed to be <0.5 β_3 . We assume H⁺ is first-order at $\mu = 2.0$ since it will be shown to be so at $\mu = 4.0$. This gives the rate equation at 298° K.

$$-\frac{d[\text{MeO}]}{dt} = [\text{MeO}][\text{H}^+](0.97 \text{ sec}^{-1} \text{ M}^{-2}[\text{SnCl}_3^-] + \frac{78 \text{ sec}^{-1} \text{M}^{-2}}{\beta_4} [\text{SnCl}_4^{2-}]) \quad (4)$$

B. $SnCl_n^{2-n}$; $\mu = 4.0$.

We have extended this study to higher concentrations of chloride ion. Data given in Table III

TABLE III	
Chloride System: $\mu = 4.0$	

C _{Cl}	[Cl-]	$k_{obs} \cdot 10^3$	$\frac{k_{obs}P}{[Sn(ID)]}$			
М	м	sec -1	Observed sec ⁻¹ M ⁻¹	Calculated sec ⁻¹ M ⁻¹		
		$C_{Sn} = 3$	5.7·10 ⁻³ M			
.0410	.0370	.155	0.064	0.063		
.0760	.070	.71	0.519	0.520		
.109	.101	1.58	1.80	1.63		
.142	.134	2.78	4.50	4.02		
.176	.163	3.85	8.73	8.09		
.209	.200	5.14	15.8	15.9		
		$C_{Sn} = 1.0$	$00 \times 10^{-3} \mathrm{M}$			
$= [C]^{-1}$.270	1.43	45.4	45.1		
`↓ '	.536	3.70	525	520		
•	.803	5.90	2.38×10^{3}	2.42×10^{3}		
	1.070	8.35	7.59	7.64		
	1.336	11.1	1.97×10^{4}	1.92 × 104		
	1.60	12.5	3.94	4.05		
	1.87	14.4	7.43	7.87		
	2.14	16.25	1.34×10^{5}	1.39 × 105		
	2.40	20.1	2.42	2.36		
	2.67	22.2	3.96	3.73		
	C _{Sn} C _{Cl}	= Total S = Total C	5n(II) present in Cl - present in M	м (

 $[Cl^{-}] =$ Free Cl⁻ present in M

were analyzed by reiteration of plots shown in Figure 2. $F(Cl^{-})$ was calculated from the equation:

$$F(Cl^{-}) = 1250[Cl^{-}]^{3} + 3350[Cl^{-}]^{4} + 1300[Cl^{-}]^{5}$$
(3b)

From these data the rate constants of interest are found to be:

$$k_3 = 1.07 \text{ sec}^{-1} \text{ M}^{-2}$$

$$k_4 = 4.10 \text{ sec}^{-1} \text{ M}^{-2}$$

$$\beta_5 k_5 = 325 k_5 > 3.25 \text{ sec}^{-1} \text{ M}^{-2} \text{ assuming}$$

$$\beta_5 < 100 \text{ M}^{-5}$$

FIGURE 2 Curves m = 0, 1, 2, 3 are direct plots of $F([Cl-])/[Cl-]^n$. These show zero intercepts requiring $k_0 = k_1 = k_2 = 0$. The m = 3 curve (only linear portion shown) shows an intercept for $k_3\beta_3 = 1260$. The initial slope of $4000 = \beta_4 k_4$ was decreased by correction for a $\beta_5 k_5$ term to 3350. The m = 4 curve is a plot of $(F([Cl-]) - \beta_3 k_3[Cl-]^3 - \beta_4 k_4[Cl-]^4)/[Cl-]^4 vs.$ [Cl-] for the final iteration. For m = 3 and m = 4, multiply abscissa by 100. Data points are shown for m = 2, circles; m = 3, dots; and m = 4, crosses.

The rate constants k_3 and k_4 are remarkably close to those obtained from Duke and Peterson's data. The mean activity coefficient y_{HCI} for $\mu = 4.0$ is roughly twice its value at $\mu = 2.0$. Furthermore, Duke and Peterson used equilibrium data obtained at $\mu = 3.0$ in analyzing kinetic data at $\mu = 2.0$. The absence of a $k_5\beta_5$ term in their study is due to the fact that significant effects due to the term could have been applied only to their point at highest (Cl⁻). Since no $k_4\beta_4$ term is required in the iodide study described below we attempted to fit our chloride data to a law containing only $k_3\beta_3$ and $k_5\beta_5$ terms. A much poorer fit was obtained than when the $k_4\beta_4$ term was included.

Order in hydrogen ion. The results shown in Figure 3 establish the reaction as first-order in H^+ .

The rate equation at $\mu = 4.0$ becomes

$$\frac{d[\text{MeO}]}{dt} = [\text{MeO}][\text{H}^+](1.07[\text{SnCl}_3^-] + 4.10[\text{SnCl}_4^{2-}] + \frac{325}{\beta_5}[\text{SnCl}_5^{3-}])$$
(4a)

C. Iodide System. $\operatorname{SnI}_{n}^{2-n}$; $\mu = 4.0$.

We have recently obtained data⁶ on equilibria for the formation of $\operatorname{SnI}_n^{2-n}$ in which no evidence for complexes of odd n > 3 is found (see Table I). We have, therefore, investigated the behavior of

FIGURE 3 Hydrogen Ion Effect.

 $[Cl^{-}] = 2.67 \text{ M}; [Sn(II)] = 0.83 \text{ mM}$ $[H^{+}] + [Na^{+}] = 4.0 \text{ M}; [ClO^{-}] = 1.33 \text{ M}$

 ${\rm SnI}_n^{2-n}$ complexes toward reduction of methyl orange. Results are given in Tables IV and V. For $[I^-] < 0.1$, ${\rm SnI}_3^-$ is the only species of kinetic importance. (Cf. Figure 4.) We cannot give actual rate constants for k_5 and k_7 but only the product $k_n\beta_n$. ${\rm SnI}_n^{2-n}$ complexes for n > 3 and odd appear to be extremely reactive, both to disproportionation and to reduction of methyl orange. Iodide complexes of odd *n* reduce methyl orange at rates at least an order of magnitude greater than corresponding chloride complexes. The apparent reactivity of ${\rm SnCl}_4^-$ vs. non-reactivity of ${\rm SnI}_4^-$ is difficult to explain.

From measurements at higher $[I^-]$ we conclude that SnI_5^{3-} contributes only 1% at 0.1 M $[I^-]$. The value $k_3\beta_3 = 6.75 \times 10^4 \text{ M}^{-5} \text{ sec}^{-1}$ is obtained (at $[H^+] = 1.0 \text{ M}$).

As in the chloride case, reactions are first order

TABLE IV

 $\begin{array}{l} \textit{Iodide System: } C_{\rm I} \leqslant 100 \ \rm{mM}; \ C_{\rm H} = 1 \ \rm{M}, \ C_{\rm Na} = 3M(ClO_4^{-}) \\ C_{\rm Sn} = 0.714 \ \rm{mM}; \ [MeO]_0 = 0.025 \ \rm{mM} \\ \mu = 4.0 \ \rm{M} \approx [ClO_4^{-}]; \ k_{obs} \ \rm{in \ sec^{-1}} \end{array}$

C. mM	C. [I~] P nM mM		$\frac{Pk_{obs}}{C_{Sn}} = F(I^{-})$	log F(I−)	log [I -]	
22.1	22.0	1.118	.464	0,334	1.372	
32.1	31.9	1.178	1.365	0.135	1.503	
52.1	51.8	1.314	6.32	0.800	1.714	
72.1	71.7	1.483	16.5(0)	1.217	1.855	
82.1	81.6	1.579	25.4	1.404	1.911	
92.1	91.5	1.684	35.4	1.548	1.961	

Log F (I^-) versus log [I^-] is a straight line with slope 3.03. See Fig. 4.

in hydrogen ion. (Tables 4 and 5.) The rate equation is:

$$\frac{d[\text{MeO}]}{dt} = [\text{MeO}][\text{H}^+](500[\text{SnI}_3^-]) + \frac{8.38 \times 10^4}{\beta_5} [\text{SnI}_5^{3-}] + \frac{3.93 \times 10^4}{\beta_7} [\text{SnI}_7^{5-}]$$
(5)

Mechanism The overall reaction involves reduction of the diazo link in methyl orange.

$$R - \dot{N} = \dot{N} - R + 6H^+ + 2Sn(II) \rightarrow 2(R - NH_3^+] + 2Sn(IV)$$

The activated complex includes one diazo group, one proton and one Sn(II). We postulate the sequence:

Protonation

$$\begin{array}{ccc}
\mathbf{R} - \ddot{\mathbf{N}} = & \mathbf{N} - \mathbf{R} + \mathbf{H}^+ \rightarrow \mathbf{R} - & \mathbf{N} = & \mathbf{N} - \mathbf{R} & (\mathbf{I}) \\
& & | \\
& & | \\
& & \mathbf{H}^+
\end{array}$$

Electron pair transfer (slow step):

The fragments all form products rapidly by the following conjectured processes.

$$\left. \begin{array}{c} H^+ \\ 3H^+ + R - \ddot{N} + :SnX_3^- \rightarrow R - \ddot{N}:H + SnX_3^+ \\ H \\ R - \ddot{N}H + 2H^+ + R - NH_3^+ \\ SnX_3^+ + 3X^- \rightarrow SnX_6^- \end{array} \right\}$$
Fast

II is the rate determining step.

Aquated Sn(II) does not react with methyl orange.¹ Halide or other ligands are essential.

FIGURE 4 A plot of log $F([I^-])$ vs. log $[I^-]$ for $[I^-] < 0.1$ giving a very accurate straight line of slope 3.02.

(II)

		Tome Su	$c_{\rm MeO} \sim 0.0$		
C _I ≈[I⁻]	$10^{3} \cdot k_{obs}$ $C_{Sn} = 0.24 \text{ mM}$ $C_{TT} = 0.067 \text{ M}$	$10^{3} \cdot k_{obs}$ $C_{Sn} = 0.58 \text{ mM}$ $C_{rr} = 0.267 \text{ M}$	P	Pk _{obs} /C _{Sn} observed	Pk _{obs} /C _{Sn} ^a calculated
М	sec ⁻¹	sec -1		$M^{-1}sec^{-1}$	M -1sec -1
.267	3.76		7.00	0.255	.258
.533	5.05		52.6	2.58	2.55
.800	4.40		287.1	12.25	12.00
1.067	3.55		1200	41.3	42.7
1.333	3.05	29.2	4270	1.257×10^{2}	1.300×10^{2}
1.600	2.60	24.3	1.36×10^{4}	3.37	3.50
1.867	2.25	23.2	3.74	8.41	8.54
2.133		20.6	9.28	1.91×10^{3}	1.91×10^{3}
2.400		18.0	2.08×10^{5}	3.74	3.95
2.933		15.8	9.13	1.44×10^{4}	1.443×10^{4}
3.467		14.6	30.6	4.47	4.34

TABLE V
Iodide System: High [I-]
Ionic Strength 4M $C_{MeO} \approx 0.01 \text{ mM}$

 $\mathbf{Pk}_{obs} = [\mathbf{H}^+]\mathbf{C}_{sn}(\mathbf{k}_3\beta_3[\mathbf{I}^-]^3 + \mathbf{k}_5\beta_5[\mathbf{I}^-]^5 + \mathbf{k}_7\beta_7[\mathbf{I}^-]^7)$

^a The results were obtained with:

$$k_3\beta_3 = 6.75 \times 104$$

 $k_8\beta_8 = 8.38 \times 104$
 $k_7\beta_7 = 3.93 \times 104$
 $k_3 = 500 \text{ M}^{-2}\text{sec}^{-1}$

Evidently, only negative complexes such as SnX_3^- , SnX_4^- , and SnX_5^{3-} can attack protonated diazo groups which must be positively charged. It appears that $k_5 > k_4$ for Cl⁻ complexes. Probably ionic attraction binds tin(II) to HMeO⁺ until reduction occurs. SnX_3^- is a soft base, unlikely to form strong σ bonds to nitrogen. SnX_n^{2-n} species are soft acids as well as bases when *n* is two or more. The increased covalent character of SnX_n^{2-n} for n = 3 or more suggests that in the higher complexes the lone pair finds itself in localized hybrid orbitals, more susceptible to attack than if it remained in the 6s² orbital of the Sn atom.

Conclusions Sn(II) requires three halide ions to be coordinated to it to render it reactive toward methyl orange. Higher complexes become kinetically important at higher halide concentrations. This suggests that the retardation of the Sn(II) reduction of NH₃OH⁺ by high [Cl⁻] is due to reactions of HCl with the Mo(VI) catalyst rather than to unreactivity of SnCl₄²⁻, SnCl₅³⁻, etc.

It should be noted that interpretation of data depends completely on results of equilibrium studies concerning the formation of SnX_n^{2-n} complexes. Results on SnI_n^{2-n} equilibria suggest the presence of SnI_6^{4-} and SnI_8^{6-} in solutions employed in this study. The high charge makes both species doubtful. Further, I^- is too large to pack 8I⁻ around an Sn²⁺ ion. At present, no other explanation will account for the equilibrium data, however.

It is perhaps worth noting that k_{obs} decreases at high $[I^-]$ according to a very simple law.

$$k_{obs} = \frac{k_3}{1 + \mathrm{K_4}[\mathrm{I}^-]}$$

where $K_4 = \beta_4/\beta_3$.

This law fits quite well the assumptions that:

- (a) Only SnI_3^- reacts with methyl orange.
- (b) SnI_4^{-} is the complex of highest *n*.

 β_3 and β_4 as given in Table I for SnI_n^{2-n} fits these assumptions very well. We feel assured as to the demonstrated reactivity of SnX_3^- species but must report apparent reactivity of SnCl_4^- , SnX_5^{3-} and SnI_7^{5-} with some reservations.

REFERENCES AND NOTES

- 1. F. R. Duke and N. C. Peterson, J. Phys. Chem. 63, 2076 (1959).
- G. P. Haight and Carl von Frankenberg, Acta Chem. Scand. 15, 2026 (1961).
- G. P. Haight, Jr., J. Zoltewicz, and W. Evans, Acta Chem. Scand. 16, 311 (1962).
- 4. G. P. Haight, Jr., and J. Peterson, Inorg. Chem. 4, 1073 (1965).
- G. P. Haight, Jr., C. H. Springer and Ole J. Heilmann, Inorg. Chem. 3, 195 (1964).
- G. P. Haight, Jr., and Lars Johansson, Acta Chem. Scand. 22, 961 (1968).
- R. D. Cramer, R. V. Lindsey, Jr., C. T. Prewitt and U. G. Stolberg, J. Am. Chem. Soc. 87, 685 (1965).
- R. V. Lindsay, Jr., G. W. Parshall and U. G. Stolberg, Inorg. Chem. 5, 109 (1966).